ar X iv : m at h / 03 11 07 4 v 1 [ m at h . D G ] 6 N ov 2 00 3 1 + 1 WAVE MAPS INTO SYMMETRIC SPACES
نویسنده
چکیده
We explain how to apply techniques from integrable systems to construct 2k-soliton homoclinic wave maps from the periodic Minkowski space S ×R to a compact Lie group, and more generally to a compact symmetric space. We give a correspondence between solutions of the −1 flow equation associated to a compact Lie group G and wave maps into G. We use Bäcklund transformations to construct explicit 2k-soliton breather solutions for the −1 flow equation and show that the corresponding wave maps are periodic and homoclinic. The compact symmetric space G/K can be embedded as a totally geodesic submanifold of G via the Cartan embedding. We prescribe the constraint condition for the −1 flow equation associated to G which insures that the corresponding wave map into G actually lies in G/K. For example, when G/K = SU(2)/SO(2) = S, the constrained −1-flow equation associated to SU(2) has the sine-Gordon equation (SGE) as a subequation and classical breather solutions of the SGE are 2-soliton breathers. Thus our result generalizes the result of Shatah and Strauss that a classical breather solution of the SGE gives rise to a periodic homoclinic wave map to S. When the group G is non-compact, the bi-invariant metric on G is pseudo-Riemannian and Bäcklund transformations of a smooth solution often are singular. We use Bäcklund transformations to show that there exist smooth initial data with constant boundary conditions and finite energy such that the Cauchy problem for wave maps from R to the pseudo-Riemannian manifold SL(2, R) develops singularities in finite time.
منابع مشابه
ar X iv : m at h / 04 11 35 1 v 2 [ m at h . A T ] 1 7 N ov 2 00 4 POINCARÉ SUBMERSIONS
We prove two kinds of fibering theorems for maps X → P , where X and P are Poincaré spaces. The special case of P = S yields a Poincaré duality analogue of the fibering theorem of Browder and Levine.
متن کاملar X iv : h ep - l at / 0 11 00 06 v 3 6 N ov 2 00 1 1 Matrix elements of ∆ S = 2 operators with Wilson fermions
متن کامل
ar X iv : m at h / 06 11 45 2 v 1 [ m at h . A G ] 1 5 N ov 2 00 6 UNIRATIONALITY OF CERTAIN SUPERSINGULAR K 3 SURFACES IN CHARACTERISTIC
We show that every supersingular K3 surface in characteristic 5 with Artin invariant ≤ 3 is unirational.
متن کاملar X iv : m at h / 03 11 05 9 v 1 [ m at h . O A ] 5 N ov 2 00 3 ON THE ASYMPTOTIC TENSOR NORM
We introduce a new asymptotic one-sided and symmetric tensor norm, the latter of which can be considered as the minimal tensor norm on the category of separable C *-algebras with homotopy classes of asymptotic homomorphisms as morphisms. We show that the one-sided asymptotic tensor norm differs in general from both the minimal and the maximal tensor norms and discuss its relation to semi-invert...
متن کاملar X iv : m at h / 03 11 20 9 v 1 [ m at h . D S ] 1 3 N ov 2 00 3 DISSIPATION TIME AND DECAY OF CORRELATIONS
We consider the effect of noise on the dynamics generated by volume-preserving maps on a d-dimensional torus. The quantity we use to measure the irreversibility of the dynamics is the dissipation time. We focus on the asymptotic behaviour of this time in the limit of small noise. We derive universal lower and upper bounds for the dissipation time in terms of various properties of the map and it...
متن کامل